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Abstract

We present a stereo extrinsics monitoring and online cal-
ibration system designed for the MIT/Delft University of
Technology Formula Student Driverless electric race car.
Many autonomous vehicles rely on stereo cameras. Un-
fortunately, the extrinsic calibration of such cameras de-
grades over time - especially in high acceleration appli-
cations. QOur project developed a method for monitoring
the accuracy of extrinsic calibrations using stereo match-
ing density and visual odometry. We also created pipeline
for computing new calibrations online and present a neural
network approach for learned keypoint descriptors, which
improves the keypoints extracted by SIFT.

1. Introduction

Stereo vision is a powerful technique in computer vision
with many and increasingly important applications. Stereo
vision can both determine the 3D structure of a scene via
stereopsis and provide rich color and texture information.
Compared to its main competitor LIDAR, stereo vision is
much lower-cost, functions at longer ranges, and is less sen-
sitive to environmental conditions such as snow and rain.
LIDAR also can only provide return intensities, which lack
much of the rich detail provided by stereo vision. The rise
of machine learning techniques, which frequently depend
heavily on texture, has made stereo vision even more valu-
able.

Recent successful applications of stereo vision include
Boston Dynamics’s SpotMini robot and Tesla’s self-driving
vehicles. Both of these have had great success using stereo
vision without complementary LIDAR sensors.

However, a practical obstacle to widespread deployment
is stereopsis’s great sensitivity to the calibration of its stereo
camera pair. Precise calibrations techniques are required to
obtain 1072 to 103 degrees of accuracy in the camera’s
orientation [2]. Offline techniques to perform this calibra-
tion are well-known and widely used [14]. Unfortunately,
camera mountings can not be made completely rigid and
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allow the stereo cameras’ poses to slightly drift over time.
This causes the cameras’ extrinsic calibration to become in-
creasingly inaccurate. Periodic recalibrations are required
to maintain accuracy.

Figure 1: MIT/DUT 2018 at Formula Student Germany

The MIT/DUT 2018 driverless race car suffered greatly
from drifting calibrations. The autonomous vehicle em-
ploys a 10 cm baseline stereo camera using two Basler
daA1600 sensors. Stereo image pairs from these cameras
are fed into a custom convolutional neural net based on
YoloV3 architecture [9] for cone identification and into a
commercial FPGA for disparity matching.

Unfortunately, due to the high accelerations experienced
by the vehicle and the insufficient rigidity of its camera
mounts, we found the stereo camera calibrations degraded
rapidly. No more than a few hours of racing could be per-
formed before matching performance was significantly af-
fected and recalibration was necessary. Even worse, it was
difficult to determine the accuracy of a given calibration,
endangering test data and requiring the team to perform un-
necessary calibrations. This was a significant waste of test-
ing and engineer time.

This has pushed us to develop a reliable stereo extrinsic
health check and online calibration system for the 2019 ve-
hicle. We developed both utilities for monitoring the accu-
racy of a stereo calibration and created a multi-step system
for online calibration.



1.1. Related Work

Our project has benefited from the significant academic
interest in stereo vision online calibration. The work of
Dang et al. [2]] on continuous refinement using reduced or-
der bundle adjustment with the epipolar and trilinear con-
straints was particularly illuminating for our project. We
also contacted the authors of Rehder et al. [[10] about their
impressive incremental bundle adjustment.

While valuable, we ultimately decided that these works
were overly general for our application and decided to pro-
duce a somewhat simpler calibration scheme.

The design and testing of our system relied on the 2015
KITTT data set [3]. Working with this data set was eas-
ier than working directly with rosbag recordings from the
MIT/DUT 2018 vehicle because it includes both raw and
rectified images as well as measured calibrations. We used
the PyKITTI library to integrate KITTI data with OpenCV
and Python.

The learned keypoint descriptor component of our work
draws heavily from Balntas ef al. [13]. They demonstrated
that a compact CNN architure could outperform traditional
keypoint descriptors such as SIFT in robustness [6]]. Their
work shows an improved accuracy in keypoint matching as
a result of this greater robustness. They leverage a triplet
loss formulation to embed patches into the desired descrip-
tor space. With a relatively compact architecture and min-
imial triplet mining, they demonstrate superior accuracy in
classifying patch pairs relative to SIFT and several other
machine learning-based approaches.

Learned descriptors have also been attempted in several
other instances. Guo et al. [§] utilizes the perceptive fields
of Fully Convolutional Networks (FCNs) to extract the rel-
evant feature maps at various depths within the CNN ar-
chitecture. These low and middle-level feature patches are
combined and pairwise similarities computed in order to
establish matching keypoint pairs. The approach demon-
strates ~ 1% improvement relative to SIFT. The idea of
learned descriptors was also influenced by the work of Di
Febbo et al. [7]. They demonstrated the efficiency of com-
pact CNN architectures for computing patch descriptors.

This work is promising for high-speed applications such
as driverless cars as any latency in the autonomous pipeline
caused by online calibration reduces the look head of the en-
tire vehicle. Their approach relies on formulating the prob-
lem of detecting keypoints as a regression problem given the
input images and keypoint locations extracted by traditional
handcrafted approaches such as SIFT. Although this inher-
ently limits the model’s ability to correctly detect keypoints
to that of SIFT, the authors demonstrate that their model
can achieve this accuracy with an impressive accompanying
speed increase by leveraging the speed of matrix computa-
tions on GPU architectures. Their method is 5x faster than
traditional keypoint extraction methods such as SIFT.

Given that the MIT/DUT 2019 vehicle includes an pow-
erful NVIDIA T4 GPU this approach has the potential to
provide a significant speed-up.

1.2. Approach

We approached this project iteratively, building up from
a basic project to an increasingly complex and fully-
featured system.

For the purposes of this project, each stereo camera is
modeled as a pinhole camera mapping 3D world coordi-
nates to 2D image coordinates as follows.
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We decompose the projection matrix into an extrinsic
and intrinsic calibration.
P =KI[R,—RT)]

K is the intrinsic calibration. Rotation matrix R and trans-
lation vector T' from one stereo camera to the other repre-
sents the extrinsic calibration.
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Since the camera is not ideal, we have to also correct for
nonlinear distortion before using this camera model. We
consider radial and tangential distortion as follows.

Tcorrected = J}(l + k‘1’l"2 + k27ﬂr + k37‘6)
Yeorrected = y(]- + kl"ﬂ2 + kor” + k37'6)
ZTeorrected = T + [2p1$y +p2(7ﬂ2 + 21'2)]

Yeorrected — Y + [pl (TQ + 2y2) + 2P2Iy}

The coefficients of lens distortion and intrinsic calibra-
tion change very slowly if at all, so offline calibrations can
be maintained indefinitely. Our system limits itself to mon-
itoring and determining the extrinsic calibration R and T'.

1.2.1 Calibration Monitoring

Our first step was to develop utilities for checking the accu-
racy of stereo calibrations. Similarly to Rehder ez al. [10],
we used the epipolar constraint between image pairs. By
finding the density of corresponding points along epipolar
lines we could get an estimate of the accuracy of the funda-
mental matrix and therefore of the calibration. We imple-
mented this using a block matching algorithm [5]].



Unfortunately, this method is not sensitive to translations
along the base length axis because these translations pre-
serve epipolar lines and only change the scale factor in the
projection matrix.

To detect inaccuracies along the base length calibration,
we also implemented the second method described in Re-
hder et al. [10] by comparing visual odometry to odom-
etry from the KITTI test vehicle’s OXTS RT3003 GPS.
By tracking the root-mean-squared error between the visual
odometry and GPS odometry, we can evaluate the scale-
sensitive calibration.

Using the known calibration and a sequence of stereo
images, I}, I, Ilt'H, I+, ..., we use the following method

to find each Rﬁcmme and T’}mme.
1. Rectify each image using the calibration.

2. Use block matching to find disparities D* between I},
It and D**! between I}, It+1,

3. Use SIFT to find matching points between I}, I/ t! and
between I?, It+1,

4. Compute world coordinates W, W**! using D?, and
D1 and the calibration.

5. Throw out points which were not matched and perform
heuristic inlier detection.

6. Perform Levenberg-Marquardt optimization to find
R}mme and thmme from remaining points.

1.2.2 Online Calibration

Now, with a system which can reliably detect inaccurate cal-
ibrations, we developed the following online optimization
scheme to solve for extrinsic calibrations from a sequence
of images I}, It, I} ™', It=1 .., IV, ItV
1. Rectify each image using the current estimated calibra-
tion R, T.

2. Use SIFT to find feature descriptors.

3. Find corresponding points using approximate nearest
neighbors algorithm from the FLANN library. Throw
out points which fail ratio test [6].

4. Use vehicle odometry to transform each image pair
into the reference frame of the most recent pair 1 f Iﬁ.

5. Solve for new extrinsic calibration minimizing epipo-
lar projection error with the method from Hartley [4]].

6. Repeat above using the new calibration.

A disadvantage to this approach is that it is scale insen-
sitive because it relies solely on the epipolar constraint. In-
corporating additional information to solve for the scale us-
ing via vehicle odometry or LIDAR would be a good future
addition to this project.

This method is relatively computationally intensive so
we also developed an interesting replacement for SIFT in
our calibration pipeline.

1.2.3 PatchNet Keypoint Extraction and Descriptors

Initially, SIFT was used as the algorithm for keypoint ex-
traction and description. While we were very happy with
its success, we decided to build incrementally upon it by in-
troducing learned descriptors to replace the handcrafted de-
scriptors computed by SIFT. To accomplish this, we trained
a compact CNN architecture on a curated dataset of image
patches.

Dataset

The dataset used for this portion of the pipeline was the
HPatches dataset [12]]. This dataset contains a large num-
ber of curated image patches that draw from a 116 diverse
scenes. The curators of this dataset introduced a variety
of photometric and geometric distortions to these patches.
These distortions provide an excellent training set for the
potential visual distortions that might be experienced by
stereo cameras in the driverless application. Secondly, as
these patches are grouped with the original image and sub-
sequent patches in increasing order of distortion, this pro-
vides us an opportunity to explore various triplet mining
approaches to improve the model’s performance. These at-
tempts will be touched on in the triplet mining section.

Architecture

The architecture for this network is presented in Table
and is constituted of 5 layers. The first four layers are com-
posed of several blocks of convolutional filters, followed by
max-pooling and sigmoid non-linearities. This section of
the network computes a feature map over the input image
patch. Finally, these feature maps are then fed into a dense
layer that computes the final descriptor vector of length 128.

Name  Output Dim. Kernel Size Stride
convl-1 32 Tx77 1
pooll 32 2x2 2
conv2-1 64 6x6 1
pool2 64 2x2 2
dense 128 N.A N.A

Table 1: PatchNet Architecture



Optimization

The final model was trained using Stochastic Gradient De-
scent on batches of 256 triplets using a learning rate of 0.1,
which decays at a rate of 107, The learning rate is also
annealed every 10 epochs to 0.8 of its previous value. Ex-
periments were also performed with the Adam optimizer,
but these tended to result in poor local optima during train-
ing. Training results over a range of epochs are shown in

Figure[5]
Loss

The following standard triplet formulation of margin rank-
ing loss was used to enforce the embedding of patches into
the descriptor space.

N

Loss = Y (/& = f715 = /i = 1115 + @)

i=1

Several experiments were conducted with alternatives,
such as Lossless Triplet Loss. This formulation presents
promise to improve triplet learning as it forces triplets even
within the margin to still contribute to the loss. However,
these resulted in far less stable training than the original for-
mulation. Additional experimentation was pursued with the
selection of the margin. Work done by Hermans et al. [1]]
indicated that larger margins might result in improved ac-
curacy on validation datasets; however, the selection of a
relatively small margin of 1 proved to be the most effec-
tive. As in Balntas ef al. [13]], positive and anchor swap-
ping were used in the loss computation to provided some
hard-negative mining within triplets at no additional com-
putational expense.

Triplet Mining

One of the major challenges of triplet-based metric learning
is the proliferation of “easy triplets”, defined as d(f¢, f)+
a < d(ff, fI*) where d is the distance function used in
triplet loss. Consider the above formulation of triplet loss,
clearly, these pairs will contribute O to the loss computa-
tion once the condition is satisfied. After several epochs,
the vast majority of triplets used will fall into this cate-
gory. Thus, this causes only a few “hard triplets”, de-
fined as d(f%, fI*) < d(f#, fF) and “semi-hard triplets”,
d(fe, fry < dife, i) < d(ff, ff) + a, to contribute to
training loss after several epochs.

To remedy this, several triplet mining approaches have
been posed. These techniques rely on mining “hard triplets”
and limit training to these, allowing the network to train
on only triplets that violating the margin. As mentioned in
the previous subsection, we utilize in-triplet hard negative
mining. To further improve training, we experimented with
hard positive mining by leveraging the structure of the the
training dataset. Since positive pairs must be drawn from

a specific image patch and some distorted version of it, we
selected pairs consisting of a reference patch and a “tough”
version of it as the positive pair. This produces a positive
pair that are visually disparate, forcing the network to im-
prove its embedding of such positive pairs in the metric
space.

This produced a 1-2% improvement in validation accu-
racy of the final model. Both of these techniques effectively
allow the mining more challenging triplets. In future work,
triplet mining could be expanded to additional online meth-
ods; however, within the time constraints of this work such
attempts proved to impossible to implement.

1.3. Experimental Results
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We found stereo density to be quite sensitive to extrinsic
rotation calibration and moderately sensitive to translation
calibration as can be seen in figures [2]and [3] These figures
show the average stereo matching density from a sample
of 1000 KITTI images against the proportional deviation
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in calibration parameters. We observed that stereo density
was quite sensitive to the calibrated rotation and moderately
sensitive to the calibrated translation. Translation along the
baseline (X in KITTI coordinates) is an exception which
is to be expected given that this transformation preserves
epipolar lines.

Visual odometry was also a fairly effective metric as can
be seen in figure[d] The error however, was rather high even
for calibrated camera. A sample of 100 sequences of 10
KITTI images had an average root-mean-squared propor-
tional deviation 0.27 with a standard deviation of 0.1. We
think it is possible this is due to inaccuracies in the GPS
odometry or with our method for performing visual odom-
etry.

We can also use these two utilities to measure the accu-
racy of our online calibration method.

KITTI | SIFT | PatchNet
Stereo Density | 0.47 0.35 0.35
VO RMS Error | 0.27 | 0.51 0.52

In Figure [5] the results of training the final version of
PatchNet over a range of epochs are shown. The graph in-
cludes training loss, as well as false positive rate at 95%
recall(FPR95), which was used as our evaluation metric.
Although training loss decreases steadily, FPR95 seems to
plateau after the initial epochs suggesting overfitting of the
model.

Despite promising results in stereo density and visual
odometry, we found that the PatchNet model demonstrated
subpar performance when benchmarked against SIFT on
Hpatches data. The chart |6 below includes the results for
a standardized matching task described in [12]]. The results
are shown in terms of mean average precision, mAP.

We suspect that this under-performance is a result of the
aforementioned overfitting caused by the large size of train-
ing samples. Further, this was likely exacerbated by the
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Figure 6: Matching Task Benchmark

difficulty of patch matching on the Hpatches dataset. In fu-
ture work, additional hard triplet mining and adjustments
to the architecture should bring PatchNet’s performance in
line with the results demonstrated in Balntas ef al. [13] on
the Phototour dataset [L1]].

The speed of the PatchNet model was also benchmarked
against SIFT on standard keypoint extraction as shown in
Table 2] Although SIFT appears to outperform the current
version of Patchet, the benchmarking was performed on a
NVIDIA K80 GPU provided by AWS. If this were to be
run on MIT/DUT 2019’s NVIDIA T4 GPU, we expect that
the Patchnet implementation would be several times faster.

SIFT | PatchNet
0.274 0.778

Table 2: Keypoint Extraction Benchmark(in seconds)



(a) Raw KITTI Image

(c) Our calibration disparities

1.4. Contributions

1.4.1 Charles Vorbach

I am responsible for all work using KITTI data. I built the
stereo density and visual odometry utilities for monitoring
calibration. I also designed and implemented the procedure
for determining calibrations online.

1.4.2 Max Tell

I am responsible for keypoint extraction and matching. I
wrote the keypoint extraction pipeline. Most of my work on
this project was focused developing and training PatchNet
as a model to compute learned descriptors.

(d) Uncalibrated disparities

1.5. Conclusion

Our project produced a robust and effective system for
monitoring and maintaining stereo extrinsic calibrations us-
ing epipolar constraints, visual odometry, and as simple on-
line calibration scheme.

We also developed a neural network model for comput-
ing keypoint descriptors to be used for stereo correspon-
dences. This produced relatively robust and efficient cor-
respondence matching with speed gains from GPU acceler-
ated hardware.

The overall calibration monitoring and online calibration
pipeline promises to be an effective tool for the MIT/DUT
2019 vehicle as well as for future stereo vision applications.
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